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Abstract 

The coadjoint conical orbits in so( 1,2)* 2: su( 1, l)* are the phase spaces of the zero mass particles 
on the two-dimensional (anti-)de Sitter space-time. It contains also, as an open dense subset, the 
phase space for massless particles on one-dimensional Minkowski space-time when one identifies 
the Poincart? group to a subgroup of the conformal group S00(2,2) z SOo( 1,2) x SOo( 1,2). On the 
other hand, the quantum representation associated to these systems is an indecomposable extension 
of the first term of the discrete series of representations of SOo( 1,2) z SU( 1, l)/&. We present 
in this paper a symbol map linking this representation and this orbit. This calculus is invariant and 
behaves correctly in the classical limit. As a result we have obtained a conformally invariant symbolic 
calculus for massless particles on (anti-)de Sitter or Minkowski space-time in 1+ 1 dimension. 
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1. Introduction 

This paper presents an invariant quantization of the nilpotent orbits (which are conical) 
of SOo( 1,2) Y SU( 1, l)/&, by means of a symbol map on the first term of the discrete 
series of representations of SOo( 1,2), U ’ and on its one-dimensional extension Vf . This 
symbol map is defined on the representations of the universal enveloping algebra of so( l(2) 
generated by U’ and V+. In the following, we shall identify SOo( 1,2) with SU(l, l)/Z2. 
The representations of SU( 1,l) involved in this paper are also representations of SOo( 1,2). 

Since the works of Weyl and Wigner, the problem of quantization, that is to say the 
correspondence between classical (symplectic manifold) and quantum (operator algebra) 
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description has been treated by many authors in different ways, for instance: Berezin quanti- 
zation using coherent states [Be], Stratonovitch correspondence [FGV,GMNO] and Poisson 
algebra deformations [BF’LS]. This correspondence, called symbolic calculus, is realized 
by means of a symbol map from a class of operators on the quantum Hilbert space to a 
class of functions on the symplectic manifold. This symbol map has to verify some nice 
properties like group invariance and classical limit property that we shall detail later. In this 
framework, we consider two problems which are already open. 
- The conical coadjoint orbits in so( 1,2)* are phase space for massless particles on (anti-)de 

Sitter space-time in two dimension. In [DBRl], we construct the quantum representation 
by means of a geometric construction: orbit method modulo dilations. By this construc- 
tion, we obtained the correct quantization, namely, the unique one-dimensional extension 
Vf of the first term U1 of the discrete series representation of SU( 1, l)/Z2 z SOu(l,2). 
It is then natural to look for a calculus, with symbols living on the cone, on the repre- 
sentation of the universal enveloping algebra generated by CT’ and V+. On one hand, 
there exists a calculus with symbols living on the cone [U], but this calculus is related 
to the metaplectic representation of the universal covering of SOu( l(2) and not to II ’ , 
moreover the method of deformations failed in quantizing the cone [Fr]. On the other 
hand, there exist also symbolic calculi on U * [Be,ACG,UU], but there, the symbols live 
on the elliptic orbits which are associated to massive particles. 

- The finite-dimensional conformal group associated to the two-dimensional Minkowski 
space-time is the group SOu(2,2) 2: SOu( 1,2) x SOu( 1,2). One can verify that only one 
term of this product acts nontrivially on right (or left) moving particles. Moreover, the 
corresponding coadjoint orbit is also the cone (in fact a dense open subset of the cone if 
we consider only the Poincare group) [R] and the quantum representation is the same as 
above [DBR2]. Symbolic calculi have been constructed for the massless representation 
of the Poincare group in one [R] and three [ACM] dimension but they are not conformally 
(i.e. SOu(2,2)) invariant and hence not satisfactory. 
In this paper, we solve these two problems by constructing an invariant symbol map for 

both the representations V+ and U ’ of the universal enveloping algebra of SU( 1, 1) with 
symbols living in the conical orbit. This furnishes an invariant symbolic calculus for (anti-)de 
Sitter massless particles, which is automatically conformally invariant (see [DBRI]), and 
a conformally invariant symbolic calculus for the massless representation of the Poincare 
group (see [DBR2]). 

The dilations of su(1, l)* play a crucial role in the construction of Vf [DBRl]. On 
one hand, the quotient (diffeomorphic to S’) of each cone by dilations is isomorphic (as 
homogeneous space) to the set of right (or left) moving lightlike geodesics on (anti-)de 
Sitter space-time. On the other hand, modulo dilations, the conical orbits are the boundary 
of the elliptic orbits. The representation V + is realized on functions on S’ which are 
boundary values of holomorphic functions on the elliptic orbits, which can be identified as 
homogeneous space to the unit disk with the homographic action of SU( 1,l). The fact that 
the representation V+ can be viewed in some sense as the boundary of the representation 
U’ associated to an elliptic orbit will play a crucial role in the construction of our calculus, 
our symbols will be defined essentially as boundary values of Berezin symbols on the disk. 
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It is somehow surprising that the operators algebra which we obtained is not a deformation 
of the full Poisson algebra but of a subalgebra. Actually, this is not very surprising so 
far as the coadjoint orbit is not a phase space because there is no classical description 
of massless particles. The physically relevant classical objects are space-time geodesics 
which are related, by the so-called “schema de Souriau”, not to the orbit but to the orbit 
modulo dilations [RI, hence it is not surprising that classical observables must verify some 
homogeneity properties. 

The rest of this paper is organized as follows. In Section 2, we recall some useful facts 
about the construction of the representation V+ and prove that eventually we can forget 
Vf and consider only U ‘. In Section 3, we define the symbol of an operator and prove its 
properties in Section 4. 

2. Quantization of a SU( 1,l) nilpotent orbit 

We consider the Lie group SU( 1, I)/( f Id), the following matrices form a basis for its 
complexified Lie algebra su( 1, 1): 

(1) 

Among the orbits of SU( 1, l)/(& Id} in its coadjoint action, we consider the nilpotent 
orbit C defined by N,’ = N+ N_, N, > 0 (in this equation the elements of su( 1, 1) are 
identified with their natural corresponding ones in the bidual su( 1, l)**). We choose polar 
coordinates on the cone C, (h, t) E R+* x Iw/2rrZ which are canonical, the 2-form reads 
o = dh A dt. In these coordinates the action of the group reads: 

(2) 

for g in SU( 1, l)/(f Id]. The hamiltonian generators corresponding to the above basis 
(l)ofsu(l,l)are: 

k,(h, t) = h, k+(L,t) = hepi’, k_ (A, t) = ie”. 

This orbit is nilpotent. For this reason, there are some difficulties in applying orbit method 
to it. It has been shown in [DBRl] that the orbit method modulo dilations allows a quan- 
tization of this orbit, and this quantization is compatible with the physical interpretations 
described in [DBRl ,DBR2]. By this way, we have obtained an indecomposable represen- 
tation V+ of SU( 1, l)/(f Id] on a space 7-1 +. This representation is an extension of the first 
term of the discrete series of representations by the trivial representation on @. That is to 
say, we have the following exact sequence of su( 1, I)-modules: 

0-t (a=@) 4 (X+,v+) 3 @3’,u’> -+ 0, (3) 

in which (at, U ‘) is the first term of the discrete series, to be defined more precisely in the 
next section. The space ‘Hf can be realized as a space of functions on C/dilations - S’, 
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and it is connected with B’ by a boundary limit process. Actually, any element e(t) in ‘l-f+ 
is the boundary value of a (unique) holomorphic function in the unit disk, denoted by e(z) 
as well, and the operator D in (3) is the operator d/dz. This construction is realized in a 
geometric way described in detail in [DBRl]. 

Moreover, the representations 17’ and V+ induce representations (on Garding subspaces) 
of the enveloping algebra 24 = U(su(l, 1)) and for our purpose, that is constructing a sym- 
bolic calculus, we can forget Vf and consider only U *. Indeed, for any operator A in 
V+(U), we construct the operator i = DAD-’ in 17’ (U) =: % which is well defined be- 
cause A (i(C)) c i(C). One can verify easily, using (3), that this correspondence is a bijec- 
tion commuting with addition, multiplication, adjointness and the action of SU( 1, I)/(& Id} 
(adjoint representation). 

Hence, we have only to construct a symbol map 

R + C”(C) 
A H A&t). 

However, the construction of V+ and its link with U1 explain the crucial role of the boundary 
limit in the construction of the symbol. 

Note that the orbit defined by N,’ = N+ N_, No < 0, is associated to the first term of 
the antiholomorphic discrete series which is (anti)isomorphic to U I. Hence, this case can 
be treated in a very similar way. 

3. Definition of the symbol 

Let us recall that the first Bargmann space is: 

f?’ = (f : 2) -+ C; f holomorphic and f E L2(2), (l/n)dz dZ)l, 

where dz dZ is the Lebesgue measure on the disk Z? = {z E C; JzJ < l}. The representation, 
which, from now on, we shall denote by U instead of U’, is defined by 

(Ugf) (z> = Hz + W2f (:;:I@) forg=(i i). 

The infinitesimal generators corresponding to the basis (1) read: 

K+ = h22; + 2Az, K_ = h$. 

Remark on the appearance of h: In the case of a nilpotent orbit, there is only one character 
from which we induce the representation in the orbit method, the trivial one. Hence, we 
obtain only one representation V+, and hence U, which does not depend on A. This factor 
appears only by the way of the usual formula 

d 
Kj = iA - U,ON~ , 

d8 j E IO, +,--]. 
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This explains the above dependence in A of the generators, which is in contrast with the 
case of the discrete series of representations of SOu( 1,2) interpreted as a relativity group 
for massive particles on curved space-time [R,GR]. 

For this representation, there exist symbolic calculi with symbols living on the disk which 
is an orbit for SU( 1, l)/{f Id}, for instance the Berezin calculus defined by using covariant 
coherent states: 

eZ,, (z) = (1 - Z,Z)-~ E 0’. 

We then define the symbol by [Be]: 

A(z ;) = (%A%) 
,i, 

(+,, t e,,) . 

These symbols are covariant in the sense that 

U;‘AU,(z,Z) = A(g . z,jCf), 

where g z is the natural action of SU( 1, I)/( f Id} on D. Moreover, we have 

A*k 2) = A(z, Z), 

Id(z,Z) = 1, 
1 +zz 

K,(z,i) = hG_ 

Z 
K+k,z) =hl_zi, K-(z,i) = h&. 

Now we are looking for a symbolic calculus with symbols living on the cone and not on 
the disk. For this purpose, we begin with decomposing the adjoint action, denoted by “ad’, 
of su( 1, 1) on ?I. We call ‘21, the vectorial subspace of 91 generated by the Kz Kf Kr with 
(Y + /l + y ( n. It is easy to see that ?I,, is a su(1, I)-submodule of ?I. Moreover, we have 

91, = ?(,_I +span(KfKz,K,“,KjK!; p+q=n,O<pln). 

This is a consequence of the following relations obtained by means of both the relations of 
commutation and the fact that the Casimir operator vanishes in this representation: 

[K_, K,) = hK_, [Km K+l = AK+, 
K-K+ = K,2 t AK,, K+K_ = K,2 - hK,. (4) 

Note that the two last relations and their consequences K+ K_ = Ki +0(A), etc. are closely 
related to our particular case. In order to have the same notations as [Bo], let 

H=;K,, X+ = ;K+, X- = ;K-. 

The element K; is primitive for the su( 1, I)-module 3, since we have 

1X+, K[Cl = 0, [H, KY] = 2nKr. 
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As a consequence, the submodule V,, generated by K; is, as C-vector space, of dimension 
2n + 1, and the following family is a basis for Vn: 

EC”) := (adx_)PKn P 
+, p=o )...) 2n. (5) 

Moreover, the following relations hold: 

[H, P)] = 2(n - p)E(“) 
[X_ L’, = EC”) 

P ’ 

rx+: &‘] = -;;1;1 - p + l)E(“) P P 1’ 

(6) 

Hence, for dimensional reasons we have 

Now, we can define the symbol of one operator in the following manner: for Yt 3 A = 
C,, A,, A,, E V,,, we define 

A@,t) = c ; ’ &y “” (1 -zZ)“A,(z,$. 
n 0 Z$' 

(7) 

The above limit is well defined because one can verify (see Appendix A) that for A E ?I, 
we have 

P(z, 2) 
&(z,j) = (1 _ zz)n, 

where P is some polynomial expression. We do insist on the crucial role of boundary limit 
in this construction. The surprising fact is that the covariance property is not lost in this 
construction, thanks to formula (2). 

4. Properties of the calculus 

Theorem 4.1. The transformation 

81 -+ C”(C) 
A I-+ A(h,t) 

dejined above (7) has the following properties: 
(1) Id(h, t) = 1 and Kj(h, t) = kj(h, t)for j = O, + , -. 
(2) The calculus is invariant: 

(’ > 
U; AUg (k,t> = A(g . (h, t)) Vg E SU(I,l), VA E ?l. 

(3) The symbol map A H A (A, t) is injective. 
(4) A*@, t) = A@., t) VA E Yl. 
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(5) For all A, B in 91 and (1, t) in C, the classical limit has the right propertie 

iirn)(AB)(A, t) = 
---f ( .+ /trno A(h, t) ) (&B&t)), 

,110 ;[A, Bl(Lt) = A@, t), tiy, B(L t) , 
i 

where ( , ) is the Poisson bracket on C. 

Remark. We can construct a star-product indexed by h as the pullback on C”(C) of the 
operators product. The fifth property shows that this product is a deformation, in the sense 
of [BF*LS], of the Poisson product on C restricted to some subspace of C”(C). The second 
property proves that this star-product is invariant. Note that the quantizable observables are 
those polynomials in h, eit for which the degree in k is greater than or equal to the degree 
in eir (see Section 1 for a brief discussion). 

Proof of Theorem 4.1. The first property is clear. The subspaces V, are su( 1, 1 )-submodules, 
hence it is enough to prove the second property on V, . Let A be in V,, then we have 

A(z,=) = ‘(“‘) 
(1 - zi)” ’ 

where P is some polynomial expression. The Bargmann calculus is covariant and we obtain 
for R as in (2), 

Hence, the second property follows immediately from (2). In order to verify injectivity, we 
infer from Appendix A that 

KT(h, t) = kneeinr = k;(L, t). 

Moreover, C”(C) has also a su( 1, I)-module structure for which kr is a primitive element 
with the same weight than Kit. Hence, the two submodules generated by K; and klf_ are 
isomorphic. Thanks to the coefficients h” in the definition, the global injectivity is clear as 
well. As a byproduct of that precedes, we see that 

For adjointness property, we begin with the following proposition. 

Proposition 4.2. The properties A E 41,, [X_, Al = 0 and [H, A] = -2nA characterize 
A up to a multiplicative constant. 

Pro@ We begin with calculation in ?I, /VI,,_ 1. Let 
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A = 2 CX~K+PK;-~ + ye; + ~GK:-~K! [modulo %,-II. 
p=I p=l 

Then using the relations listed in Appendix A, we obtain 

[X-, A] = &n + p)~y~K;-’ K;-p+’ + (n + I)CYI K,” 
p=2 

+nyKz-‘K_+e(n-p+ ~>~,-IK,“-~K! [modulo&11. 
p=2 

Hence, [X-, A] = 0 =+ A = B,, K!! [modulo Y&-t]. Using again the same argument on 
A - j3n K’J, etc., we obtain that A = xi=, BP K!, moreover, by a direct calculation [Bo], 

we have [H, K!] = -2pK!, then [H, A] = -2nA implies that A = /In K!!. 0 

Corollary 4.3. E:“,) = (2n)!K!!. 

Proo_f: The relation EE) = &K!! is a consequence of both (6) and Proposition 4.2. 

Moreover, from (4) we deduce easily that E:“,) = (2n)!K1 [modulo !?t,_t], the result 
follows. 0 

Corollary 4.4. The space V,, is invariant under the operation of taking adjoints. 

ProoJ From Corollary 4.3, we obtain (Et))’ = (1/(2n)!)E:“,) and by induction, using (5), 

(E(n))* = p! 
P 

Eb) 
(2n - p)! 2n-p’ 

??

Proof of Theorem 4.1 (continued). Now the fourth property of the theorem follows easily 
from the fact that the same property holds for the Berezin symbols. 

Finally, we have to prove the classical limit properties. From (4) we obtain 

ECnJ _ 
P - I 

(2n)! 

(2n - P)! 
Kp-‘K,p + O(A) forO5pIn, 

(2n) ! K2n-pKp-n 
(2n -p)! ’ - 

+ O(h) for n 5 p 5 2n. 

Let 

0 F(n) Kz-‘K,p for 5 p 5 n, 
P 

= 

K2n-pKp-n 0 - for n 5 p 5 2n. 

(9) 

Then from (8) and (9) we obtain 

Fcn)(3, t) = k.“e-‘(“-P)’ + O(A) P ’ (10) 
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moreover, the algebra 52 is commutative modulo A, hence 

+lfrn) 
Pf4 = FWP) + O(A), P 

from which we deduce by linearity the first property of the classical limit. Using Appendix 
A, we obtain also 

The second property is an easy consequence of (10) and ( 11). The theorem is proved. 0 

Appendix A: Some calculations on Bargmann space operators 

From (4), we obtain by direct calculation the following results which have been used 
freely in the end of this paper: 

[K!, K,P] = qphK,P-‘K! +0(h) = qphKqK,P-’ + o(A), 

[K:, K;] = qpAKq KP-’ + 0 + o(A), 
K” K” = K2” + An2K2n-1 

K,,; = K;n 

+ o(h), 

- hn’K;“-’ + o(h). 

On the other hand, we have [GR]: 

(AIAz)(z,Z) = c ’ 
pzo p!(p + 

Hence. we have: 

, 

As a first consequence, we have 

z” 
KI;(z,Z) = A”@ + I)! (1 _ -),, > 

as a second consequence, we can prove by induction that for any A E 81, we have 

P(z, 2) 
A(i,i) = (1 _ zz)” > 

where P is some polynomial expression. 
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